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Known with the name of the Slater-Janak transition-state model, Janak’s theorem allows a calculation of
charge transition levels by analyzing the Kohn-Sham eigenvalues of the density-functional theory without the
need of explicitly comparing differently charged systems. Unfortunately, the usual local-density approximation
�LDA� and its gradient extensions fail in describing the Kohn-Sham eigenvalues sufficiently well. In this work
we show that the Slater-Janak transition state becomes a powerful tool if applied self-consistently within an
LDA+U approach. We first explain this fact analytically and then present a numerical validation, calculating
the Slater-Janak transition state for a selection of representative examples in GaN. The formalism is found to
be valid for all the investigated examples, which are, besides oxygen donors �ON� and carbon acceptors �CN�,
also systems with negative-U effect �nitrogen vacancies, VN� and strongly correlated electrons �europium
substitutionals, EuGa�.
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I. INTRODUCTION

The electronic structure in the band-gap region of a semi-
conductor determines its optical and electronic nature. Intrin-
sic defects or impurities can induce localized states in the
gap giving rise to different charge states of the system with
different electronic properties. Charge transition levels are
the thermodynamic quantities representing the position of the
Fermi level at which a defect changes its charge state and,
thus, play a crucial role in materials science.

From the theoretical point of view, however, their calcu-
lation is a demanding task. The most frequently used method
to calculate them in a straightforward way is the so-called
�SCF approach that requires a direct comparison of the total
energy of different charge states of a given system. Unfortu-
nately, using periodic boundary conditions in this approach
leads to some uncertainties due to the spurious Coulomb
interaction of the periodic images of the charged supercells.
Several corrections have been proposed and applied in the
literature.1–3 However, their benefit in the general case is still
in discussion.

The so-called Janak transition state4 provides an alterna-
tive to calculate charge transition levels within density-
functional theory �DFT�. Besides a sufficiently reliable pre-
diction of the energetical position with respect to the band
edges, it requires a linear dependence of the Kohn-Sham
�KS� eigenvalues on their occupation numbers. Both as-
sumptions are not automatically fulfilled for all systems if
using usual local-density approximation �LDA� of DFT.
From a fundamental point of view, the eigenvalues of Kohn-
Sham theory do not generally have a physical meaning. Only
if the exchange-correlation potential can be described ex-
actly, then the eigenvalue of the highest occupied state is
equal to the electron chemical potential.5 In LDA this re-
quirement is not fulfilled, ending up, e.g., with underesti-
mated band gaps inducing some uncertainties to the eigen-
values. The second requirement, the linearity with respect to

the occupation numbers, has been recently investigated
within the DFT approach by Göransson et al.6 for 24 differ-
ent �random� metallic alloy systems, finding that, in first ap-
proximation, the Kohn-Sham eigenvalues show a linear be-
havior as a function of their occupation number. However,
serious deviations from this linear behavior should be ex-
pected for systems with strongly correlated electrons.

For this kind of systems, the LDA+U approach7 is well
known to improve the description of the total energy of a
system of N electrons with respect to the total number of
electrons and thus with respect to the occupation numbers. In
this way it is ensured per construction that the ground-state
total energy E�N� of a system of N electrons is linear be-
tween N and N+1. In this work we show that such a linear
behavior of the total energy also guarantees the linearity of
the Kohn-Sham one-particle levels with respect to the occu-
pation numbers and, thus, the applicability of the Janak for-
malism. Afterward, this is also numerically demonstrated by
calculating the charge transitions for a selection of known
defects in GaN �EuGa, VN, ON, and CN� via Janak’s transition
state. Since these comprehensive calculations are very time
consuming we choose a rather approximate but efficient
tight-binding method to perform the LDA+U total-energy
calculations, the density-functional-based tight-binding
�DFTB� framework,8 which includes orbital-dependent
potentials.9,10 In the past, the LDA version of the method has
been successfully applied to semiconductor compounds such
as SiC,11 GaAs,12 and also GaN.13 In addition to its effi-
ciency the method allows for an empirical correction of the
in LDA underestimated gap to its experimental value �see
also Sec. III A�. In this sense the choice of a tight-binding
allows us to discuss the effect of the linearity of the eigen-
values separately.

The charge state transition calculated with the Slater-
Janak �SJ� model is in good agreement with previous calcu-
lations for the investigated systems, demonstrating the valid-
ity of the Janak model. This work is organized as follows. In
Sec. II we review the Janak transition-state formalism and
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discuss its application within the LDA+U formalism. In Sec.
III the results of the simulation of our reference system are
then presented and discussed. Finally in Sec. IV the whole
work is summarized.

II. THEORY

According to Janak’s theorem the Kohn-Sham eigenval-
ues of the DFT can be calculated as the derivative of the total
energy with respect to the occupation number of the related
Kohn-Sham orbital,4

�E�N�
��i

= �i. �1�

Here E is the DFT total energy, �i is the Kohn-Sham
eigenvalue of the ith orbital, and �i its occupation number
�0��i�1� so that the total number of electrons becomes
N=�i�i. By integrating Eq. �1� it becomes possible to calcu-
late the change in the total energy when we introduce one
electron in the lowest unoccupied level of a system with N
electrons that of course for the system with N+� electrons
becomes the highest occupied orbital ��H�,

EN+1 − EN = �
0

1

�H���d� . �2�

Assuming that the Kohn-Sham eigenvalue �H is a linear
function of the occupation number, we obtain

�N/N + 1� = EN+1 − EN = �H�1

2
� , �3�

which defines the SJ transition state. If we want the SJ tran-
sition state to be rigorously taken into account, �H� 1

2 � has to
be calculated in a self-consistent calculation with a 1

2 occu-
pation of the highest occupied orbital that is affected by the
charge transition.

However, making again use of an assumed linearity of �H
one can also write

�H�1

2
� 	

1

2
��H

N+1�0� + �H
N+1�1�� =

1

2
��L

N�0� + �H
N+1�1�� .

�4�

In other words, a good estimate for �H� 1
2 � is obtained by

averaging the eigenvalues of the lowest unoccupied orbital in
the N-electron system and the highest occupied orbital in the
system containing N+1 electrons. In the work of Göransson
et al.6 can be found a thorough investigation of the validity
of Eq. �4� using LDA for selected examples. It gives a very
good estimate of the position of the transition level as long as
the Franck-Condon shift, which is due to the lattice relax-
ation as consequence of the charge change in the defect, is
negligible. In this work we show that Eq. �3� �i.e., the self-
consistent calculation of the SJ transition� is in principle able
to overcome this restriction. However, a further problem of
the approach remains in the correct description of �i for the
general case. It is well known that in LDA the highest occu-
pied molecular orbital–lowest unoccupied molecular orbital

�HOMO-LUMO� gap between occupied and unoccupied or-
bitals is not well described, inducing in critical cases also
some uncertainties into the energetic position of the KS lev-
els. In addition, the assumption of the linearity of �i is not
ensured for strongly localized electrons. We show that the
latter problem can be coped by the use of orbital-dependent
functionals beyond LDA, e.g., by a LDA+U approach.

The exact total energy E�N� of a system of N electrons is
a piecewise linear function of the total number of the elec-
trons. As stated by Eschrig14 and Cococcioni and de
Gironcoli,15 this linearity is never provided in actual realiza-
tions of the theory �DFT-LDA or DFT–generalized gradient
approximation �GGA��. In LDA or GGA the incorrect treat-
ment of the partially occupied Kohn-Sham orbitals gives a
nonlinear contribution to the total energy, resulting in an un-
physical curvature of E�N�, as reported in Fig. 1. The linear-
ity is hardly verified for strongly correlated electrons like
those in the strongly localized d or f shells of transition
metals and rare earths. Here, the application of the +U po-
tentials largely recovers the piecewise linear behavior of the
exact ground-state energy as a function of the occupations.15

Within an LDA+U approach also the slope of the KS eigen-
values can be improved considerably. This guarantees that
the assumption behind the Janak transition-state model, i.e.,
that the eigenvalues are linear functions of the occupation
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FIG. 1. �Color online� Lower part: The exact total-energy profile
of a system of N electrons as a piecewise linear curve, never pro-
vided in actual DFT implementations such as LDA/GGA �solid
line�, where a spurious curvature is a consequence of the incorrect
treatment of the self-interaction. The bottom curve is the difference
between the other two �see also Ref. 15�. Upper part: The LDA/
GGA eigenvalue depend roughly linearly on the occupation num-
bers. The LDA+U corrections �dotted� are also a linear function of
the occupation number. The resulting LDA+U eigenvalues are in
the best case �for the ideal U value� piecewise constant.
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number, is automatically verified, even in the case of solids,
where fractional occupations of the orbitals could occur as a
consequence of the hybridization between atomiclike orbitals
and environment.

If the total-energy functional E�N� is, as it should be, a
linear function of the total number of electrons N, then the
one-particle energies are not only linear in the occupation
numbers �i but also piecewise constant �with jumps at inte-
ger values of N, see Fig. 1�,

�i =
�E�N�

��i
=

�N

��i

�E�N�
�N

=
�E�N�

�N
= const. �5�

In other words, if we would have an ideal U, i.e., a value
which perfectly recovers the piecewise linearity of E�N�,
then the Kohn-Sham levels, defined as the first derivative of
this functional with respect to the occupation numbers,
would be piecewise constant and independent from the oc-
cupation numbers itself. The independence of the KS orbitals
from their occupation numbers is for sure verified �also in
DFT-LDA� in the case of extended orbitals, corresponding to
the vanishing U for delocalized electrons �e.g., the band
structure of an ideal solid does in fact not change adding or
subtracting electrons�. In the case of localized states the situ-
ation is of course different: an additional charge in the orbital
will cause a change in the form �wave function� of the or-
bital.

In the following we present a short overview of the
LDA+U approach. We restrict ourselves to the spin-
unpolarized case; the spin-polarized extension of the formal-
ism can be found elsewhere.10 The LDA+U correction to the
total energy is

E = ELDA − �
M

1

2
UMNM�NM − 1� −

1

2 �
i�j�M

Uij�i� j� ,

with the Coulomb integral

Uij = �i, j
Vee
i, j� , �6�

and

UM =
1

NM
2 �

i,j�M
Uij =

1

�2l + 1�2 �
i,j�M

Uij , �7�

whereby the Uij vanish if i and j are belonging to different
localized manifolds M, containing NM=�i�M=2l+1
strongly interacting electronic orbitals. As a consequence,
each Kohn-Sham level is corrected by an amount,

�i =
�ELDA+U

��i
= �iLDA + Uii�1

2
− �i� , �8�

i.e., an orbital-dependent linear correction Uii�
1
2 −�i� is pro-

vided that is able to recover the constant one-particle levels
from the linear-dependent regime in the case of LDA, as
sketched in the upper part of Fig. 1. In summary we have
shown analytically that in the LDA+U formalism, the per-
fect recover of the constancy of the one-particle levels is
provided by a set of perfect U values. The U values can be
determined by a set of full self-consistent calculations on
supercells with fractional electron numbers with U then cho-

sen to cancel the slope of the LDA eigenvalues. In our work
no Makov-Payne-type corrections are used because we think
that using big supercells the interactions between charged
defects can be reduced. Some residual error due to spurious
charge-charge interactions becomes “wrapped up” in the U
values. These considerations hold also in the case of strongly
correlated electrons as shown numerically in Sec. III.

III. RESULTS AND DISCUSSION

A. Computational

The calculations are carried out with the DFTB calcula-
tion scheme which gives us the possibility to investigate
charged systems in a very efficient way. In particular, with
the use of very big supercells �512 atoms� the spurious inter-
action of charged defects with their periodic images can be
reduced significantly. In addition the DFTB code allows for
an empirical correction of the fundamental gap to the experi-
mental value by optimizing the on-site Hubbard U that enters
the tight-binding Hamiltonian.8 Note that both properties ap-
pear to be necessary to obtain sufficiently well-described po-
sitions of the one-particle levels.

All numerical results were obtained by spin-polarized
DFTB calculations. The spin configuration which minimizes
the total energy was determined and used in each case.
512�256�-atom supercells of both hexagonal and cubic GaN
containing one impurity �corresponding to a distance of
17.5 Å between defects in neighboring cells� were relaxed
within the � approximation until the residual forces were
lower than 10−4 eV /atom.

The substitutional EuGa was also simulated with unrelaxed
supercells in order to get results readily comparable with the
literature. For each investigated system the position of the
highest occupied orbital was calculated for occupation num-
bers from 0 to 1 with a step of 0.1, i.e., in 11 different points.
The position of the transition levels is given with respect to
the valence-band �VB� maximum �VBM�. Since the VB edge
in a supercell approach is not easy to determine,16 an addi-
tional error bar of about 0.05–0.1 eV has to be taken into
account. To analyze the linearity of the Kohn-Sham levels
the norm of the residuals �mean-square deviation� between a
linear fit and the calculated values is used,

� =
1

n
��

i=0

n

���xi�interpol. − ��xi�calc.�2, �9�

where xi= �0.0,0.1, . . . ,1.0�, and �calc. and �interpol. are the
calculated and interpolated positions of the one-particle lev-
els.

B. ON and CN in GaN

We first chose oxygen and carbon as representatives for
the class of donor and acceptor impurities in GaN. Together
with Si, oxygen is the standard impurity to dope GaN n
type and is often an unintentional dopant.17 Carbon has
been suggested to be a convenient way to increase the
hole concentration in GaN.18 In recent experimental studies,
C has been shown to be an alternative to Mg in order
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to obtain p-type-doped cubic GaN.19 Both dopants
have been frequently investigated experimentally and
theoretically.16,17,20–22 They are expected to be simple defects
�both forming N substitutionals17� which at least in their ion-
ized state �CN

− and ON
+ � do not cause major distortion in the

lattice due to their similarity �radius ad electronegativity�
with the isoelectric substituted ion. CN substitutionals lay on
site independently from their charge state. However, accord-
ing to the DFTB total-energy calculations, oxygen in the
neutral charge state does not stay on site but occupies an
off-center position instead. More precisely the O atom is
displaced along the crystal c axis by 0.59 Å in the direction
of the three equivalent Ga ligands. This configuration is 0.11
eV more favorable than the on-site configuration.

Due to the rather delocalized character of the wave func-
tions, these defects should be already sufficiently well de-
scribed within LDA for the calculation of the charge transi-
tion levels via the SJ transition state. In Fig. 2 the results of
our LDA calculations of the �+ /0� transition related to the
substitutional ON and of the transition �0 /−� for the substi-
tutional CN in hexagonal GaN are compiled. First, we ob-
serve that in both cases the Kohn-Sham eigenvalues are
roughly linear functions of the occupation �, as revealed by
the nearly vanishing norm of residuals �see Eq. �9��, calcu-

lated in 7.336�10−3 and 0.981�10−3, respectively. Second,
in the case of ON an increase in the occupation number of the
one-particle level lowers its energy. Consequently the slope
of the curve describing the position of this level depending
from its occupation is negative, similar to negative-U sys-
tems. This is however the classic behavior of shallow donors.
The charge transition levels for the hexagonal phase are cal-
culated at 3.35 and 0.34 eV above the valence band for ON
and CN, respectively, as reported in Table I. The same charge
transitions in cubic GaN take place at very similar energies.
This is in very good agreement with the existing data prov-
ing our assumption that these rather delocalized states can be
properly analyzed using the model of a SJ transition state.23

C. VN in GaN

The nitrogen vacancy in GaN is already discussed fre-
quently in the literature as giving rise to negative-U transi-
tions. Van de Walle and Neugebauer17 calculated a �+3 /+�
transition to take place around 0.5 eV above the valence
band, a value that later on based on increased supercell sizes
was corrected by the same authors to be found somewhat
closer to the VB maximum �around 0.3 eV�. Only recently,
Ganchenkova and Nieminen claimed the existence of transi-
tions into negatively charged states.24 Accordingly, a �+ /−�
negative-U transition is predicted to take place 2.46 eV
above the valence-band edge.

In this work we investigate the negative-U transitions of
VN in hexagonal GaN with the help of the SJ transition state
by carefully analyzing the charge states between +3 and − in
the framework of LDA taking advantage of the empirically
corrected gap. In the neutral charge state the nitrogen va-
cancy introduces a singly occupied a1 state in the GaN band
gap. Adding an electron the system is negatively charged and
the localized state is doubly occupied, while subtracting one
electron the system is positively charged and the level empty.
First we check the linearity of this level with the occupation.
The last two boxes in Fig. 3 show the position of the KS
state calculated by adding and subtracting an electron. The
norm of residuals � of these states �1.315�10−3 and
0.889�10−3� shows their linear behavior. These pictures cor-
respond to the transitions �+ /0� and �0 /−�, respectively. The
first is calculated at 2.90 eV and the second at 2.32 eV above
the valence band. In other words, the transition �0 /−� takes
place before the transition �+ /0�. For the system is more
convenient to charge the localized state directly with two
electrons than with one missing out the charge state VN

0 and
giving rise to a direct transition from the positive into the
negative charge state. This negative-U transition manifests
itself also in an unusual negative slope of the position of the
KS levels. The corresponding �+ /−� transition can be easily
calculated as the average of the charge transitions �+ /0� and
�0 /−� resulting in a value of �2.90+2.32� /2=2.61 eV, in
qualitative agreement with the value of 2.46 eV calculated in
Ref. 24. The remaining discrepancy may be due to the fact
that our approach provides an empirically corrected gap, thus
leaving the one-particle level in question deep in the gap,
whereas in the ab initio calculation this level is found artifi-
cially close to the too low lying LDA-conduction bands. The
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FIG. 2. �Color online� Highest occupied one-particle level as a
function of its occupation for the ON donor �upper box� and CN

acceptor �lower box� in hexagonal GaN �DFTB-LDA calculations�.
The dotted lines are linear interpolations of the calculated points.
The zero of the energy scale corresponds to the VBM.
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charge states +3, +2, and +1 almost give rise to a negative-U
system, as the vacancy in the charge state +2 only can be
formed if the Fermi levels lie in an interval which is only
0.003 eV wide. In this sense our results are in agreement
with Ref. 17.

The structure of the nitrogen vacancy changes a lot with
the charge states: while in the charge state +1 the structure
shows a �small� outward relaxation and the C3v symmetry, in
the charge states −1 is inward and the symmetry is D2d,
indicating a Jahn-Teller distortion. The distance between the
Ga nearest neighbors is for the negative states very similar to
the equilibrium Ga-Ga distance in bulk �-Ga and metallic-
like Ga-Ga bonds have to be expected. The values of the
norm of residuals � for the investigated systems indicate that
the Kohn-Sham eigenvalues depend in first approximation
linearly on the occupation numbers �. On the same time the
minor deviations from the ideal values of 0.000 reveal a
slight “concave” behavior, as already found by Göransson et
al.6 in the case of metallic alloys.

D. EuGa in GaN

The REGa substitutionals are the simplest stable lan-
thanide defects in GaN and in particular EuGa has been al-
ready studied both experimentally25 and theoretically.26,27 In
the latter work,27 a charge transition related to an acceptor
level �0 /−� in cubic GaN was found at 2.44 eV above the
valence band, whereby the strong localization of the Eu f
electrons is taken into account within a self-interaction cor-
rected �SIC� extension of LDA. In contrast, we present an
LDA+U investigation of this level, i.e., the nonlocal and
energy-dependent self-energy is approximated by a fre-
quency independent but nonlocal screened Coulomb
potential.9,10 The charge transition levels represent the posi-
tion of the Fermi level at which a defect changes its charge

TABLE I. Charge transition levels and slopes of the function ����=��+� for different systems. The
levels are given in eV above the valence band. The slope � �in eV� and the mean-square deviation �
according Eq. �9� have been calculated for the hexagonal phase. For completeness, the corresponding data for
cubic GaN are also given. For the +U parameters denoted by � the LDA+U approach recovers the piecewise
linearity of the one-particle levels of the Eu f orbitals.

System Method Structure Transition 	�0.5� hexagonal 	�0.5� cubic Slope � ���10−3�

ON LSDA Relaxed �+ /0� 3.35 3.35 −1.219 7.336

CN LSDA Relaxed �0 /–� 0.32 0.34 −0.024 0.981

VN LSDA Relaxed �0 /–� 2.31 2.35 −0.194 0.889

VN LSDA Relaxed �+ /0� 2.89 3.26 −0.077 1.315

VN LSDA Relaxed �2+ /+� 0.18 0.07 0.039 0.334

VN LSDA Relaxed �3+ /2+� 0.15 0.09 0.014 0.120

EuGa LSDA Ideal �0 /–� 2.83 2.81 1.990 42.340

EuGa LSDA Relaxed �0 /–� 1.71 1.81 2.701 20.004

EuGa LSDA+U �0.20 H� Ideal �0 /–� 2.74 2.74 0.889 3.986

EuGa LSDA+U �0.24 H� Ideal �0 /–� 2.72 2.70 0.414 4.662

EuGa LSDA+U �0.26 H� Ideal �0 /–� 2.71 2.69 0.134 8.116

EuGa LSDA+U �0.27 H� � Ideal �0 /–� 2.70 2.69 −0.017 8.479

EuGa LSDA+U �0.28 H� Ideal �0 /–� 2.70 2.70 −0.169 9.523

EuGa LSDA+U �0.22 H� Relaxed �0 /–� 1.60 1.55 0.487 7.506

EuGa LSDA+U �0.24 H� Relaxed �0 /–� 1.60 1.55 0.115 4.036

EuGa LSDA+U �0.25 H� � Relaxed �0 /–� 1.58 1.54 −0.072 4.523

EuGa LSDA+U �0.26 H� Relaxed �0 /–� 1.58 1.53 −0.274 5.648

EuGa LSDA+U �0.28 H� Relaxed �0 /–� 1.57 1.52 −0.672 8.481
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FIG. 3. �Color online� Highest occupied one-particle level as a
function of its occupation for the different charge states of the iso-
lated VN in hexagonal GaN �DFTB-LDA calculations�. The lines
are linear interpolations of the calculated points. Note that the KS
state in the first two boxes an s-like a1 orbital is filled up step by
step while the last two boxes are characterized by the p-like orbital
derived from the splitting of the t2 state in a doublet and a singlet in
wurtzite GaN. The zero of the energy scale corresponds to the
VBM.

VALIDITY OF THE SLATER-JANAK TRANSITION-STATE… PHYSICAL REVIEW B 78, 085201 �2008�

085201-5



state. They are of course affected by variations of the relax-
ation due to the presence of additional electrons. In order to
be able to compare our results directly with the SIC work of
Svane et al.27 for unrelaxed defect structures, we also pro-
vide an explicit discussion of the influence of the lattice re-
laxation. We start our discussion with an LDA investigation
of the one-particle levels introduced in the band gap by the
Eu impurity. As expected the dependence of the Kohn-Sham
eigenvalues from the occupation cannot be really considered
linear, it shows a rather pronounced convex behavior �see
Fig. 4, left-hand side�, reflected by a quite large norm of
residuals ��=42.340·10−3�. The situation becomes different
with an LDA+U investigation. The orbital-dependent poten-
tials introduced by LDA+U are used to correctly reproduce
the separation between the two Hubbard subbands of full and
empty f states with the parameter +U corresponding to the
energy difference of the two bands. An estimate of the sepa-
ration between the two Hubbard subbands is given by the
Hubbard U of the atomic shell giving rise to the mentioned
bands so that a first sensible choice for the correction is
exactly the Hubbard U of the corresponding atomic shell. In

this work the +U potentials are applied only to the Eu f
shells. We used different +U values around the value of 1

2Uf
calculated for the Eu atom using Janak’s theorem, namely,
7.1 eV �0.26 H�. This value is consistent with that used in
recent works for similar simulations.28,29

The results of our calculation are reported in Fig. 4
�right-hand side�: the f-related level introduced by the Eu
impurity in the GaN band gap is now a linear function of the
occupation number �� values between 3.986�10−3 and
9.523�10−3 for the unrelaxed defect and between
4.036�10−3 and 8.481�10−3 for the relaxed defect�. The
value of the correction for which the position Kohn-Sham
level does not depend on its occupation � can be considered
the ideal value for the manifold M of the Eu f electrons
discussed in Eq. �6�. This value does not only depend on the
atomic species but also slightly from details of the system
such as charge state and the microscopic structure �see also
Fig. 4�: Whereas for the ideal geometries the piecewise lin-
earity of the total energy with respect to the total number of
electrons is restored for a Hubbard U of 0.25 H, the corre-
sponding value for the relaxed defect structure is given by
U=0.27 H. Note that in both cases the in this sense self-
consistently determined value of the Hubbard U differs only
slightly form the value of 0.26 H obtained from atomic cal-
culations.

The position of the transition �0 /−� depends also slightly
on the +U values and is calculated for hexagonal GaN and
the relaxed structure at 1.58 eV above the band gap and at
2.70 eV above the band gap not considering the relaxation.
The transition calculated for cubic GaN are only slightly
lower whereby the one not considering the relaxation is in
very good agreement with the value calculated by Svane et
al.27 for the ideal unrelaxed defect structure using the �SCF
approach in combination with a SIC-functional.

IV. SUMMARY

In this work we demonstrate the validity of the Janak
transition-state model, considered as an alternative way to
the total-energy difference for the calculation of transition
state. The charge transition levels have been calculated for
different examples, including a selection of defects and im-
purities in GaN, besides oxygen donors �ON� and carbon
acceptors �CN� also systems with negative-U effect �nitrogen
vacancies, VN� and those with strongly correlated electrons
�EuGa�. Whereas in the latter case the linearity of the one-
particle states with the occupation numbers is not provided in
LDA, the application of the LDA+U approach recovers this
linear dependence that is necessary for the SJ transition
model to be applicable accurately. All numerical results are
obtained by an approximate but efficient tight-binding ap-
proach that enables us to discuss the effect of the linearity of
the eigenvalues separately while correcting the fundamental
gap of GaN to the well-known experimental value. In this
sense we reduce in part the predictive nature of the reference
calculations. However, we are confident that the fundamental
result, the validity of the Janak transition-state model, con-
sidered as an alternative way to the total-energy difference
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FIG. 4. �Color online� Highest occupied one-particle level as a
function of its occupation for the EuGa substitutional in cubic GaN.
In the first picture DFTB-LDA and in the second DFTB-LDA+U
calculations. The lines are linear interpolations of the calculated
data. In the second picture upper bunch of curves refer to calcula-
tions where the relaxation of the atomic positions is not considered
and lower bunch of curves are calculated taking in account the
atomic relaxation.
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for the calculation of charge transition in connection with the
LDA+U extension of DFT holds also for first-principles
implementations of LDA+U. Even in cases when the band
gap is not correctly described, the Slater-Janak transition
state avoids the uncertainties �artificial Coulomb interaction�
induced by comparing differently charged supercells. This
benefit of the Slater-Janak transition state should be valid in

connection with all extensions of the DFT including orbital-
dependent potentials, not only LDA+U but also SIC, exact
exchange, and especially the GW approximation. The latter
approach should be perfectly suited to be combined with the
SJ transition state since the quasiparticle approach leads to
fundamental gaps and quasiparticle levels which are in rea-
sonable agreement with the experiment.
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